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fax +1 (212) 869-0481, or permissions@acm.org.Improved Approximation Algorithms for Maximum Cut andSatis�ability Problems Using Semide�nite Programming�Michel X. GoemansyM.I.T. David P. WilliamsonzIBM WatsonAbstractWe present randomized approximation algorithms for the maximum cut (MAX CUT) andmaximum 2-satis�ability (MAX 2SAT) problems that always deliver solutions of expectedvalue at least .87856 times the optimal value. These algorithms use a simple and eleganttechnique that randomly rounds the solution to a nonlinear programming relaxation. Thisrelaxation can be interpreted both as a semide�nite program and as an eigenvalue mini-mization problem. The best previously known approximation algorithms for these problemshad performance guarantees of 12 for MAX CUT and 34 for MAX 2SAT. Slight extensions ofour analysis lead to a .79607-approximation algorithm for the maximumdirected cut problem(MAX DICUT) and a .758-approximation algorithm for MAX SAT, where the best previouslyknown approximation algorithms had performance guarantees of 14 and 34 respectively. Ouralgorithm gives the �rst substantial progress in approximating MAX CUT in nearly twentyyears, and represents the �rst use of semide�nite programming in the design of approximationalgorithms.IntroductionGiven an undirected graphG = (V;E) and non-negative weights wij = wji on the edges (i; j) 2 E,the maximum cut problem (MAX CUT) is that of �nding the set of vertices S that maximizesthe weight of the edges in the cut (S; �S); that is, the weight of the edges with one endpoint in Sand the other in �S. For simplicity, we usually set wij = 0 for (i; j) =2 E and denote the weightof a cut (S; �S) by w(S; �S) =Pi2S;j =2S wij . The MAX CUT problem is one of the Karp's originalNP-complete problems [37], and has long been known to be NP-complete even if the problemis unweighted; that is, if wij = 1 for all (i; j) 2 E [19]. The MAX CUT problem is solvable inpolynomial time for some special classes of graphs (e.g. if the graph is planar [52, 27]). Besidesits theoretical importance, the MAX CUT problem has applications in circuit layout design andstatistical physics (Barahona et al. [4]). For a comprehensive survey of the MAX CUT problem,the reader is referred to Poljak and Tuza [62].Because it is unlikely that there exist e�cient algorithms for NP-hard maximization problems,a typical approach to solving such a problem is to �nd a �-approximation algorithm; that is, a�A preliminary version has appeared in the Proceedings of the 26th Annual ACM Symposium on Theory ofComputing, Montr�eal, pages 422{431, 1994.yAddress: Dept. of Mathematics, Room 2-382, M.I.T., Cambridge, MA 02139. Email: goemans@math.mit.edu.Research supported in part by NSF contract 9302476-CCR and DARPA contract N00014-92-J-1799.zAddress: IBM T.J. Watson Research Center, Room 33-219, P.O. Box 218, Yorktown Heights, NY, 10598.Email: dpw@watson.ibm.com. Research supported by an NSF Postdoctoral Fellowship. This research was con-ducted while the author was visiting MIT. 1
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polynomial-time algorithm that delivers a solution of value at least � times the optimal value.The constant � is sometimes called the performance guarantee of the algorithm. We will also usethe term \�-approximation algorithm" for randomized polynomial-time algorithms that deliversolutions whose expected value is at least � times the optimal. In 1976, Sahni and Gonzales [66]presented a 12-approximation algorithm for the MAX CUT problem. Their algorithm iteratesthrough the vertices and decides whether or not to assign vertex i to S based on which placementmaximizes the weight of the cut of vertices 1 to i. This algorithm is essentially equivalent tothe randomized algorithm that 
ips an unbiased coin for each vertex to decide which verticesare assigned to the set S. Since 1976, a number of researchers have presented approximationalgorithms for the unweighted MAX CUT problem with performance guarantees of 12 + 12m [69],12 + n�14m [61], 12 + 12n [30], and 12 + 12� [33] (where n = jV j, m = jEj and � denotes the maximumdegree), but no progress was made in improving the constant in the performance guaranteebeyond that of Sahni and Gonzales's straightforward algorithm.We present a simple, randomized (� � �)-approximation algorithm for the maximum cutproblem where � = min0���� 2� �1� cos � > 0:87856;and � is any positive scalar. The algorithm represents the �rst substantial progress in approx-imating the MAX CUT problem in nearly twenty years. The algorithm for MAX CUT alsoleads directly to a randomized (�� �)-approximation algorithm for the maximum 2-satis�abilityproblem (MAX 2SAT). The best previously known algorithm for this problem has a perfor-mance guarantee of 34 and is due to Yannakakis [71]. A somewhat simpler 34 -approximationalgorithm was given in Goemans and Williamson [22]. The improved 2SAT algorithm leads to.7584-approximation algorithm for the overall MAX SAT problem, fractionally better than Yan-nakakis' 34 -approximation algorithm for MAX SAT. Finally, a slight extension of our analysisyields a (�� �)-approximation algorithm for the maximum directed cut problem (MAX DICUT),where � = min0��<arccos(�1=3) 2� 2� � 3�1 + 3 cos � > 0:79607:The best previously known algorithm for MAX DICUT has a performance guarantee of 14 [55].Our algorithm depends on a means of randomly rounding a solution to a nonlinear relaxationof the MAX CUT problem. This relaxation can either be seen as a semide�nite program or asan eigenvalue minimization problem. To our knowledge, this is the �rst time that semide�niteprograms have been used in the design and analysis of approximation algorithms. The relaxationplays a crucial role in allowing us to obtain a better performance guarantee: previous approxi-mation algorithms compared the value of the solution obtained to the total sum of the weightsPi<j wij . This sum can be arbitrarily close to twice the value of the maximum cut.A semide�nite program is the problem of optimizing a linear function of a symmetric matrixsubject to linear equality constraints and the constraint that the matrix be positive semide�nite.Semide�nite programming is a special case of convex programming and also of the so-called linearprogramming over cones or cone-LP since the set of positive semide�nite matrices constitutes aconvex cone. To some extent, semide�nite programming is very similar to linear programming;see Alizadeh [1] for a comparison. It inherits the very elegant duality theory of cone-LP (seeWolkowicz [70] and the exposition by Alizadeh [1]). The simplex method can be generalized tosemide�nite programs (Pataki [57]). Given any � > 0, semide�nite programs can be solved withinan additive error of � in polynomial time (� is part of the input, so the running time dependenceon � is polynomial in log 1� ). This can be done through the ellipsoid algorithm (Gr�otschel etal. [26]) and other polynomial-time algorithms for convex programming (Vaidya [67]) as well as2
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interior-point methods (Nesterov and Nemirovskii [50, 51] and Alizadeh [1]). To terminate inpolynomial time, these algorithms implicitly assume some requirement on the feasible space oron the size of the optimum solution; for details see Gr�otschel et al. [26] and Section 3.3 of Alizadeh[1]. Since the work of Nesterov and Nemirovskii, and Alizadeh, there has been much developmentin the design and analysis of interior-point methods for semide�nite programming; for severalreferences available at the time of writing of this paper, see the survey paper by Vandenbergheand Boyd [68].Semide�nite programming has many interesting applications in a variety of areas includingcontrol theory, nonlinear programming, geometry and combinatorial optimization; see [51, 9, 68,1], the references therein and the references below. In combinatorial optimization, the impor-tance of semide�nite programming is that it leads to tighter relaxations than the classical linearprogramming relaxations for many graph and combinatorial problems. A beautiful applicationof semide�nite programming is the work of Lov�asz [43] on the Shannon capacity of a graph. Inconjunction with the polynomial-time solvability of semide�nite programs, this leads to the onlyknown polynomial-time algorithm for �nding the largest stable set in a perfect graph (Gr�otschelet al. [25]). More recently, there has been increased interest in semide�nite programming froma combinatorial point-of-view [46, 47, 1, 58, 17, 45]. This started with the work of Lov�asz andSchrijver [46, 47], who developed a machinery to de�ne tighter and tighter relaxations of anyinteger program based on quadratic and semide�nite programming. Their papers demonstratedthe wide applicability and the power of semide�nite programming for combinatorial optimizationproblems. Our use of semide�nite programming relaxations was inspired by these papers, andby the paper of Alizadeh [1].For MAX CUT, the semide�nite programming relaxation we consider is equivalent to aneigenvalue minimization problem proposed by Delorme and Poljak [13, 12]. An eigenvalue mini-mization problem consists of minimizing a decreasing sum of the eigenvalues �i of a matrix subjectto equality constraints on the matrix; that is, minimizing Pimi�i, where �1 � �2 � � � � � �nand m1 � m2 � � � � � mn � 0. The equivalence of the semide�nite program we consider andthe eigenvalue bound of Delorme and Poljak was established by Poljak and Rendl [58]. Buildingon work by Overton and Womersley [54, 53], Alizadeh [1] has shown that eigenvalue minimiza-tion problems can in general be formulated as semide�nite programs. This is potentially quiteuseful, since there is an abundant literature on eigenvalue bounds for combinatorial optimizationproblems; see the survey paper by Mohar and Poljak [49].As shown by Poljak and Rendl [60, 59] and Delorme and Poljak [14], the eigenvalue boundprovides a very good bound on the maximum cut in practice. Delorme and Poljak [13, 12] studythe worst-case ratio between the maximum cut and their eigenvalue bound. The worst instancethey are aware of is the 5-cycle for which the ratio is 3225+5p5 = 0:88445 . . ., but they were unableto prove a bound better than 0.5 in the worst-case. Our result implies a worst-case bound of �,very close to the bound for the 5-cycle.The above discussion on the worst-case behavior indicates that straightforward modi�cationsof our technique will not lead to signi�cant improvements in the MAX CUT result. Furthermore,MAX CUT, MAX 2SAT, and MAX DICUT are MAX SNP-hard [55], and so it is known thatthere exists a constant c < 1 such that a c-approximation algorithm for any of these problemswould imply that P = NP [2]. Bellare, Goldreich, and Sudan [6] have shown that c is as small as83/84 for MAX CUT and 95/96 for MAX 2SAT. Since bidirected instances of MAX DICUT areequivalent to instances of MAX CUT, the bound for MAX CUT also applies to MAX DICUT.Since the appearance of an abstract of this paper, Feige and Goemans [16] have extendedour technique to yield a .931-approximation algorithm for MAX 2SAT and a .859-approximationalgorithm for MAX DICUT. By using semide�nite programming and similar rounding ideas,3
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Karger, Motwani, and Sudan [36] have been able to show how to color a k-colorable graph with~O(n1� 3k+1 ) colors in polynomial time. Frieze and Jerrum [18] have used the technique to deviseapproximation algorithms for the maximum k-way cut problem that improve on the previouslybest known 1� 1=k performance guarantee. Chor and Sudan [10] apply ideas from this paper tothe \betweeness" problem. Thus it seems likely that the techniques in this paper will continueto prove useful in designing approximation algorithms.We expect that in practice the performance of our algorithms will be much better than theworst-case bounds. We have performed some preliminary computational experiments with theMAX CUT algorithm which show that on a number of di�erent types of random graphs thealgorithm is usually within .96 of the optimal solution.A preliminary version of this paper [21] presented a method to obtain deterministic versionsof our approximation algorithm with the same performance guarantees. However, the methodgiven had a subtle error, as was pointed out to us by several researchers. Mahajan and Ramesh[48] document the error and propose their own derandomization scheme for our algorithms.The paper is structured as follows. We present the randomized algorithm for MAX CUT inSection 1, and its analysis in Section 2. We elaborate on our semide�nite programming boundand its relationship with other work on the MAX CUT problem in Section 3. The quality ofthe relaxation is investigated in Section 4, and computational results are presented in Section5. In Section 6, we show how to extend the algorithm to an algorithm for MAX 2SAT, MAXSAT, MAX DICUT, and other problems. We conclude with a few remarks and open problemsin Section 7.1 The Randomized Approximation Algorithm for MAX CUTGiven a graph with vertex set V = f1; . . . ; ng and non-negative weights wij = wji for each pairof vertices i and j, the weight of the maximum cut w(S; �S) is given by the following integerquadratic program:Maximize 12Xi<j wij(1� yiyj)(Q) subject to: yi 2 f�1; 1g 8i 2 V:To see this, note that the set S = fijyi = 1g corresponds to a cut of weight w(S; �S) =12Pi<j wij(1� yiyj).Since solving this integer quadratic program is NP-complete, we consider relaxations of (Q).Relaxations of (Q) are obtained by relaxing some of the constraints of (Q), and extending theobjective function to the larger space; thus all possible solutions of (Q) are feasible for therelaxation, and the optimal value of the relaxation is an upper bound on the optimal value of(Q). We can interpret (Q) as restricting yi to be a 1-dimensional vector of unit norm. Somevery interesting relaxations can be de�ned by allowing yi to be a multi-dimensional vector vi ofunit Euclidean norm. Since the linear space spanned by the vectors vi has dimension at most n,we can assume that these vectors belong to Rn (or Rm for some m � n), or more precisely tothe n-dimensional unit sphere Sn (or Sm for m � n). To ensure that the resulting optimizationproblem is indeed a relaxation, we need to de�ne the objective function in such a way that itreduces to 12Pi<j wij(1� yiyj) in the case of vectors lying in a 1-dimensional space. There areseveral natural ways of guaranteeing this property. For example, one can replace (1� yiyj) by(1� vi � vj) where vi � vj represents the inner product (or dot product) of vi and vj . The resulting4
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relaxation is denoted by (P ):Maximize 12Xi<j wij(1� vi � vj)(P ) subject to: vi 2 Sn 8i 2 V:We will show in Section 3 we can solve this relaxation using semide�nite programming. We cannow present our simple randomized algorithm for the MAX CUT problem.1. Solve (P ), obtaining an optimal set of vectors vi.2. Let r be a vector uniformly distributed on the unit sphere Sn.3. Set S = fijvi � r � 0g.In other words, we choose a random hyperplane through the origin (with r as its normal) andpartition the vertices into those vectors that lie \above" the plane (i.e. have a non-negative innerproduct with r) and those that lie \below" it (i.e. have a negative inner product with r). Themotivation for this randomized step comes from the fact that (P ) is independent of the coordinatesystem: applying any orthonormal transformation to a set of vectors results in a solution withthe same objective value.Let W denote the value of the cut produced in this way, and E[W ] its expectation. We willshow in Theorem 2.1 in Section 2 that, given any set of vectors vi 2 Sn, the expected weight ofthe cut de�ned by a random hyperplane isE[W ] =Xi<j wij arccos(vi � vj)� :We will also show in Theorem 2.3 thatE[W ] � � � 12Xi<j wij(1� vi � vj);where � = min0���� 2� �1�cos � > :878: If Z�MC is the optimal value of the maximum cut and Z�P isthe optimal value of the relaxation (P ), then since the expected weight of the cut generated bythe algorithm is equal to E[W ] � �Z�P � �Z�MC , the algorithm has a performance guarantee of� for the MAX CUT problem.We must argue that the algorithm can be implemented in polynomial time. We assume thatthe weights are integral. In Section 3 we show that the program (P ) is equivalent to a semide�niteprogram. Then we will show that by using an algorithm for semide�nite programming we canobtain, for any � > 0, a set of vectors vi's of value greater than Z�P � � in time polynomial inthe input size and log 1� . On these approximately optimal vectors, the randomized algorithm willproduce a cut of expected value greater than or equal to �(Z�P � �) � (� � �)Z�MC . The pointon the unit sphere Sn can be generated by drawing n values x1; x2; . . . ; xn independently fromthe standard normal distribution, and normalizing the vector obtained (see Knuth [38, p. 130]);for our purposes, there is no need to normalize the resulting vector x. The standard normaldistribution can be simulated using the uniform distribution between 0 and 1 (see Knuth [38, p.117]). The algorithm is thus a randomized (�� �)-approximation algorithm for MAX CUT.5
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2 Analysis of the AlgorithmIn this section, we analyze the performance of the algorithm. We �rst analyze the general caseand then consider the case in which the maximum cut is large and the generalization to negativeedge weights. We conclude this section with a new formulation for the MAX CUT problem.Let fv1; . . . ; vng be any vectors belonging to Sn, and let E[W ] be the expected value of thecut w(S; �S) produced by the randomized algorithm given in the previous section. We start bycharacterizing the expected value of the cut.Theorem 2.1 E[W ] = 1�Xi<j wij arccos(vi � vj):Given a vector r drawn uniformly from the unit sphere Sn, we know by the linearity ofexpectation that E[W ] =Xi<j wij � Pr[sgn(vi � r) 6= sgn(vj � r)];where sgn(x) = 1 if x � 0, and -1 otherwise. Theorem 2.1 is thus implied by the following lemma.Lemma 2.2 Pr[sgn(vi � r) 6= sgn(vj � r)] = 1� arccos(vi � vj):Proof : A restatement of the lemma is that the probability the random hyperplane separates thetwo vectors is directly proportional to the angle between the two vectors; that is, it is proportionalto the angle � = arccos(vi �vj). By symmetry, Pr[sgn(vi �r) 6= sgn(vj �r)] = 2Pr[vi �r � 0; vj �r < 0].The set fr : vi �r � 0; vj �r < 0g corresponds to the intersection of two half-spaces whose dihedralangle is precisely �; its intersection with the sphere is a spherical digon of angle � and, bysymmetry of the sphere, thus has measure equal to �2� times the measure of the full sphere. Inother words, Pr[vi � r � 0; vj � r < 0] = �2� , and the lemma follows.Our main theorem is the following. As we have argued above, this theorem applied to vectorsvi's of value greater than Z�P � � implies that the algorithm has a performance guarantee of �� �.Recall that we de�ned � = min0���� 2� �1� cos � :Theorem 2.3 E[W ] � �12Xi<j wij(1� vi � vj):By using Theorem 2.1 and the nonnegativity of wij , the result follows from the followinglemma applied to y = vi � vj .Lemma 2.4 For �1 � y � 1, 1� arccos(y) � � � 12(1� y):Proof : The expression for � follows straightforwardly by using the change of variables cos � = y.See Figure 1, part (i).The quality of the performance guarantee is established by the following lemma.Lemma 2.5 � > :87856: 6
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Proof : Using simple calculus, one can see that � achieves its value for � = 2:331122 . . ., thenon-zero root of cos �+ � sin � = 1. To formally prove the bound of 0:87856, we �rst observe that2� �1�cos � � 1 for 0 < � � �=2. The concavity of f(�) = 1� cos � in the range �=2 � � � � impliesthat, for any �0, we have f(�) � f(�0) + (�� �0)f 0(�), or 1� cos � � 1� cos �0+ (�� �0) sin �0 =� sin �0 + (1� cos �0 � �0 sin �0). Choosing �0 = 2:331122 for which 1� cos �0 � �0 sin �0 < 0, wederive that 1� cos � < � sin �0, implying that � > 2� sin �0 > 0:87856:We have analyzed the expected value of the cut returned by the algorithm. For randomizedalgorithms, one can often also give high probability results. In this case, however, even computingthe variance of the cut value analytically is di�cult. Nevertheless, one could use the fact that Wis bounded (byPi<j wij) to give lower bounds on the probability thatW is less than (1��)E[W ].
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Figure 1: (i) Plot of z = arccos(y)=� as a function of t = 12(1 � y). The ratio z=t is thus theslope of the line between (0; 0) and (z; t). The minimum slope is precisely � = 0:742=0:844 andcorresponds to the dashed line. (ii) The plot also represents h(t) = arccos(1�2t)=� as a functionof t. As t approaches 1, h(t)=t also approaches 1. (iii) The dashed line corresponds to ~h between0 and 
 � :844.2.1 Analysis when the maximum cut is largeWe can re�ne the analysis and prove a better performance guarantee whenever the value ofthe relaxation (P ) constitutes a large fraction of the total weight. De�ne Wtot = Pi<j wij andh(t) = arccos(1� 2t)=�. Let 
 be the value of t attaining the minimum of h(t)=t in the interval(0,1]. The value of 
 is approximately .84458.Theorem 2.6 Let A = (Pi<j wij 1�vi �vj2 )=Wtot. If A � 
, thenE[W ] � h(A)A Xi<j wij 1� vi � vj2 :7
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The theorem implies a performance guarantee of h(A)=A�� when A � 
. As A varies between
 and 1, one easily veri�es that h(A)=A varies between � and 1 (see Figure 1, part (ii)).Proof : Letting �e = wij=Wtot and xe = 1�vi�vj2 for e = (i; j), we can rewrite A as A = Pe �exe.The expected weight of the cut produced by the algorithm is equal toE[W ] =Xi<j wij arccos(vi � vj)� = WtotXe �e arccos(1� 2xe)� = WtotXe �eh(xe):To bound E[W ], we evaluateMin Xe �eh(xe)subject to:Xe �exe = A0 � xe � 1:Consider the relaxation obtained by replacing h(t) by the largest (pointwise) convex function~h(t) smaller or equal to h(t). It is easy to see that ~h(t) is linear with slope � between 0 and 
,and then equal to h(t) for any t greater than 
. See Figure 1, part (iii). But for A � 
,Xe �eh(xe) �Xe �e~h(xe) � ~h(Xe �exe) = ~h(A) = h(A);where we have used the fact that Pe �e = 1, �e � 0 and that ~h is a convex function. This showsthat E[W ] � Wtoth(A) = h(A)A Xi<j wij 1� vi � vj2 ;proving the result.2.2 Analysis for negative edge weightsSo far, we have assumed that the weights are non-negative. In several practical problems, someedge weights are negative [4]. In this case the de�nition of the performance guarantee has to bemodi�ed since the optimum value could be positive or negative. We now give a correspondinggeneralization of Theorem 2.3 to arbitrary weights.Theorem 2.7 Let W� =Pi<j w�ij , where x� = min(0; x). ThenfE[W ]�W�g � �8<:12Xi<j wij(1� vi � vj)�W�9=; :Proof : The quantity E[W ]�W� can be written asXi<j:wij>0wij arccos(vi � vj)� + Xi<j:wij<0 jwij j�1� arccos(vi � vj)� � :Similarly, n12Pi<j wij(1� vi � vj)�W�o is equal toXi<j:wij>0wij 1� vi � vj2 + Xi<j:wij<0 jwijj1 + vi � vj2 :The result therefore follows from Lemma 2.4 and the following variation of it.8
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Lemma 2.8 For �1 � z � 1; 1� 1� arccos(z) � � � 12(1 + z).Proof : The lemma follows from Lemma 2.4 by using a change of variables z = �y and notingthat � � arccos(z) = arccos(�z).2.3 A new formulation of MAX CUTAn interesting consequence of our analysis is a new nonlinear formulation of the maximum cutproblem. Consider the following nonlinear program:Maximize Xi<j wij arccos(vi � vj)�(R) subject to: vi 2 Sn 8i 2 V:Let Z�R denote the optimal value of this program.Theorem 2.9 Z�R = Z�MC :Proof : We �rst show that Z�R � Z�MC : This follows since (R) is a relaxation of (Q): the objectivefunction of (R) reduces to 12Pi<j wij(1� vivj) in the case of vectors vi lying in a 1-dimensionalspace.To see that Z�R � Z�MC , let the vectors vi denote the optimal solution to (R). From Theorem2.1, we see that the randomized algorithm gives a cut whose expected value is exactly Z�R,implying that there must exist a cut of value at least Z�R.3 Relaxations and DualityIn this section, we address the question of solving the relaxation (P ). We do so by showingthat (P ) is equivalent to a semide�nite program. We then explore the dual of this semide�niteprogram and relate it to the eigenvalue minimization bound of Delorme and Poljak [13, 12].3.1 Solving the RelaxationWe begin by de�ning some terms and notation. All matrices under consideration are de�nedover the reals. An n � n matrix A is said to be positive semide�nite if for every vector x 2 Rn,xTAx � 0. The following statements are equivalent for a symmetric matrix A (see e.g. [39]): (i)A is positive semide�nite, (ii) all eigenvalues of A are non-negative, and (iii) there exists a matrixB such that A = BTB. In (iii), B can either be a (possibly singular) n� n matrix, or an m� nmatrix for some m � n. Given a symmetric positive semide�nite matrix A, an m � n matrixB of full row-rank satisfying (iii) can be obtained in O(n3) time using an incomplete Choleskydecomposition [23, p. 90, P5.2-3].Using the decomposition Y = BTB, one can see that a positive semide�nite Y with yii = 1corresponds precisely to a set of unit vectors v1; . . . ; vn 2 Sm: simply correspond the vector vi tothe ith column of B. Then yij = vi �vj . The matrix Y is known as the Gram matrix of fv1; . . . ; vng[39, p. 110]. Using this equivalence, we can reformulate (P ) as a semide�nite program:Z�P = Max 12Xi<j wij(1� yij)(SD) subject to: yii = 1 8i 2 VY symmetric positive semide�nite9
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where Y = (yij). The feasible solutions to (SD) are often referred to as correlation matrices [24].Strictly speaking, we cannot solve (SD) to optimality in polynomial time; the optimal value Z�Pmight in fact be irrational. However, using an algorithm for semide�nite programming, one canobtain, for any � > 0, a solution of value greater than Z�P � � in time polynomial in the input sizeand log 1� . For example, Alizadeh's adaptation of Ye's interior-point algorithm to semide�niteprogramming [1] performs O(pn(logWtot+log 1� )) iterations. By exploiting the simple structureof the problem (SD) as is indicated in [64] (see also [68, Section 7.4]), each iteration can beimplemented in O(n3) time. Once an almost optimal solution to (SD) is found, one can use anincomplete Cholesky decomposition to obtain vectors v1; . . . ; vn 2 Sm for some m � n such that12Pi<j wij(1� vi � vj) � Z�P � �.Among all optimum solutions to (SD), one can show the existence of a solution of low rank.Grone, Pierce and Watkins [24] show that any extreme solution of (SD) (i.e. which cannot beexpressed as the strict convex combination of other feasible solutions) has rank at most l wherel(l+1)2 � n, i.e. l � p8n+1�12 < p2n. For related results, see [41, 11, 42, 40]. This means thatthere exists a primal optimum solution Y � to (SD) of rank less than p2n, and that the optimumvectors vi of (P ) can be embedded in Rm with m < p2n. This result also follows from a moregeneral statement about semide�nite programs due to Barvinok [5] and implicit in Pataki [56]:any extreme solution of a semide�nite program with k linear equalities has rank at most l wherel(l+1)2 � k.3.2 The Semide�nite DualAs mentioned in the introduction, there is an elegant duality theory for semide�nite programming.We now turn to discussing the dual of the program (SD). It is typical to assume that the objectivefunction of a semide�nite program is symmetric. For this purpose, we can rewrite the objectivefunction of (SD) as 14Pni=1Pnj=1 wij(1� yij), or even as 12Wtot� 14PiPj wijyij . In matrix form,the objective function can be conveniently written as 12Wtot � 14Tr(WY ), where W = (wij) andTr denotes the trace.The dual of (SD) has a very simple description:Z�D = 12Wtot + 14Min Xi 
i(D) subject to: W + diag(
) positive semide�nite,where diag(
) denotes the diagonal matrix whose ith diagonal entry is 
i. The dual has a simpleinterpretation. Since W + diag(
) is positive semide�nite, it can be expressed as CTC; in otherwords, the weight wij can be viewed as ci � cj for some vectors ci's and 
i = ci � ci = kcik2. Theweight of any cut is thus w(S; �S) = (Pi2S ci) � �Pj =2S cj�, which is never greater than



Pi2V ci2 



2 = 12Wtot + 14Xi2V 
i:Showing weak duality between (P ) and (D), namely that Z�P � Z�D, is easy. Considerany primal feasible solution Y and any dual vector 
. Since both Y and W + diag(
) arepositive semide�nite, we derive that Tr((diag(
) + W )Y ) � 0 (see [39, p. 218, ex. 14]). ButTr((diag(
)+W )Y ) = Tr(diag(
)Y )+Tr(WY ) =Pi 
i+Tr(WY ), implying that the di�erenceof the dual objective function value and the primal objective function value is non-negative.For semide�nite programs in their full generality, there is no guarantee that the primal opti-mum value is equal to the dual optimum value. Also, the maximum (resp. minimum) is in fact10
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a supremum (resp. in�mum) and there is no guarantee that the supremum (resp. in�mum) isattained. These, however, are pathological cases. Our programs (SD) and (D) behave nicely;both programs attain their optimum values, and these values are equal (i.e. Z�P = Z�D). This canbe shown in a variety of ways (see [58, 1, 5]).Given that strong duality holds in our case, the argument showing weak duality implies that,for the optimum primal solution Y � and the optimum dual solution 
�, we have Tr((diag(
�) +W )Y �) = 0. Since both diag(
�)+W and Y � are positive semide�nite, we derive that (diag(
�)+W )Y � = 0 (see [39, p. 218, ex. 14]). This is the strong form of complementary slackness forsemide�nite programs (see Alizadeh [1]); the component-wise product expressed by the trace isreplaced by matrix multiplication. This implies, for example, that Y � and diag(
�) +W share asystem of eigenvectors and that rank(Y �) + rank(diag(
�) +W ) � n.3.3 The Eigenvalue Bound of Delorme and PoljakThe relaxation (D) (and thus (P )) is also equivalent to an eigenvalue upper bound on the valueof the maximum cut Z�MC introduced by Delorme and Poljak [13, 12]. To describe the bound, we�rst introduce some notation. The Laplacian matrix L = (lij) is de�ned by lij = �wij for i 6= jand lii =Pnk=1 wik. The maximum eigenvalue of a matrix A is denoted by �max(A).Lemma 3.1 [Delorme and Poljak [13]] Let u 2 Rn satisfy u1 + . . . + un = 0. Thenn4�max(L+ diag(u))is an upper bound on Z�MC .The proof is simple. Let y be an optimal solution to the integer quadratic program (Q). Noticethat yTLy = 4Z�MC . By using the Rayleigh principle (�max(M) = maxkxk=1 xTMx), we obtain�max(L+ diag(u)) � yT (L+ diag(u))yyTy= 1n  yTLy + nXi=1 y2i ui!= 4Z�MCn ;proving the lemma. A vector u satisfying Pni=1 ui = 0 is called a correcting vector. Let g(u) =n4�max(L + diag(u)): The bound proposed by Delorme and Poljak [13] is to optimize g(u) overall correcting vectors:Z�EIG = Inf g(u)(EIG) subject to: nXi=1 ui = 0:As mentioned in the introduction, eigenvalue minimization problems can be formulated assemide�nite programs. For MAX CUT, the equivalence between (SD) and (EIG) was establishedby Poljak and Rendl [58].For completeness, we derive the equivalence between (EIG) and the dual (D). For theoptimum dual vector 
�, the smallest eigenvalue of diag(
�) + W must be 0, since otherwisewe could decrease all 
�i by some � > 0 and thus reduce the dual objective function. This11
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can be rewritten as �max(�W � diag(
�)) = 0. De�ne � as (Pi 
�i + 2Wtot)=n. By de�nition,Z�D = n�=4. Moreover, de�ning ui = � � 
�i �Pj wij , one easily veri�es that Pi ui = 0 andthat �W � diag(
�) = L+ diag(u)� �I , implying that �max(L+ diag(u)) = �. This shows thatZ�EIG � Z�D. The converse inequality follows by reversing the argument.4 Quality of the RelaxationIn this section we consider the tightness of our analysis and the quality of the semide�nite boundZ�P . Observe that Theorem 2.3 implies the following corollary:Corollary 4.1 For any instance of MAX CUT,Z�MCZ�P � �:For the 5-cycle, Delorme and Poljak [13] have shown that Z�MC=Z�EIG = 3225+5p5 = 0:88445 . . .,implying that our worst-case analysis is almost tight. One can obtain this bound from therelaxation (P ) by observing that for the 5-cycle 1 � 2 � 3 � 4 � 5 � 1, the optimal vectors liein a 2-dimensional subspace and can be expressed as vi = (cos(4i�5 ); sin(4i�5 )) for i = 1; . . . ; 5corresponding to Z�P = 52(1 + cos �5 ) = 25+5p58 . Since Z�MC = 4 for the 5-cycle, this yields thebound of Delorme and Poljak. Delorme and Poljak have shown that Z�MC=Z�EIG � 3225+5p5 holdsfor special subclasses of graphs, such as planar graphs or line graphs. However, they were unableto prove a bound better than 0.5 in the absolute worst-case.Although the worst-case value of Z�MC=Z�P is not completely settled, there exist instances forwhich E[W ]=Z�P is very close to �, showing that the analysis of our algorithm is practically tight.Leslie Hall [31] has observed that E[W ]=Z�P � :8787 for the Petersen graph [8, p. 55]. In Figure2, we give an unweighted instance for which the ratio is less than .8796 in which the vectors havea nice three-dimensional representation. We have also constructed a weighted instance on 103vertices for which the ratio is less than .8786. These two instances are based on strongly self-dualpolytopes due to Lov�asz [44]. A polytope P in Rn is said to be strongly self-dual [44] if (i) P isinscribed in the unit sphere, (ii) P is circumscribed around the sphere with origin as center andwith radius r for some 0 < r < 1, and (iii) there is a bijection � between vertices and facets of Psuch that, for every vertex v of P , the facet �(v) is orthogonal to the vector v. For example, inR2, the strongly self-dual polytopes are precisely the regular odd polygons. One can associate agraph G = (V;E) to a self-dual polytope P : the vertex set V corresponds to the vertices of Pand there is an edge (v; w) if w belongs to the facet �(v) (or, equivalently, v belongs to �(w)).For the regular odd polygons, these graphs are simply the odd cycles. Because of conditions (ii)and (iii), the inner product v � w for any pair of adjacent vertices is equal to �r. As a result, astrongly self-dual polytope leads to a feasible solution of (P ) of value 1+r2 Wtot. Lov�asz [44] gives arecursive construction of a class of strongly self-dual polytopes. One can show that, by choosingthe dimension n large enough, his construction leads to strongly self-dual polytopes for whichr is arbitrarily close to the critical value giving a bound of �. However, it is unclear whether,in general, for such polytopes, non-negative weights can be selected such that the vectors givenby the polytope constitute an optimum solution to (P ). Nevertheless, we conjecture that suchinstances lead to a proof that E[W ]=Z�P can be arbitrarily close to �. Even if this could be shown,this would not imply anything for the ratio Z�MC=Z�P .12
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Figure 2: Graph on 11 vertices for which the ratio E[W ]=Z�P is less than :8796 in the unweightedcase. The convex hull of the optimum vectors is depicted on the right; the circle represents thecenter of the sphere.5 Computational ResultsIn practice, we expect that the algorithm will perform much better than the worst-case boundof �. Poljak and Rendl [60, 59] (see also Delorme and Poljak [14]) report computational resultsshowing that the bound Z�EIG is typically less than 2-5% and, in the instances they tried, neverworse than 8% away from Z�MC . We also performed our own computational experiments, in whichthe cuts computed by the algorithm were usually within 4% of the semide�nite bound Z�P , andnever less than 9% from the bound. To implement the algorithm, we used code supplied by R.Vanderbei [64] for a special class of semide�nite programs. We use Vanderbei's code to solve thesemide�nite program, then we generate 50 random vectors r. We output the best of the 50 cutsinduced. We applied our code to a small subset of the instances considered by Poljak and Rendl[60]. In particular, we considered several di�erent types of random graphs, as well as completegeometric graphs de�ned by Traveling Salesman Problem (TSP) instances from the TSPLIB (seeReinelt [63]).For four di�erent types of random graphs, we ran 50 instances on graphs of 50 vertices, 20 ongraphs of size 100, and 5 on graphs of size 200. In the Type A random graph, each edge (i; j) isincluded with probability 1/2. In the Type B random graph, each edge is given a weight drawnuniformly from the interval [-50,50]; the ratio of Theorem 2.7 is used in reporting nearness tothe semide�nite bound. In the Type C random graph of size n � 10, an edge (i; j) is includedwith probability 10=n, leading to constant expected degree. Finally, in the Type D randomgraphs, an edge (i; j) is included with probability .1 if i <= n=2 and j > n=2 and probability .05otherwise, leading to a large cut between the vertices in [1; . . . ; n=2] and those in [n=2+1; . . . ; n].We summarize the results of our experiments in Table 1 below. CPU Times are given in CPUseconds on a Sun SPARCstation 1.In the case of the TSP instances, we used Euclidean instances from the TSPLIB, and setthe edge weight wij to the Euclidean distance between the points i and j. We summarize our13
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Type of Graph Size Num Trials Ave Int Gap Ave CPU Time50 50 .96988 36.28Type A 100 20 .96783 323.08200 5 .97209 4629.6250 50 .97202 23.06Type B 100 20 .97097 217.42200 5 .97237 2989.0050 50 .95746 23.53Type C 100 20 .94214 306.84200 5 .92362 2546.4250 50 .95855 27.35Type D 100 20 .93984 355.32200 5 .93635 10709.42Table 1: Summary of results of algorithm on random instances. Ave Int Gap is the average ratioof the value of the cut generated to the semide�nite bound, except for Type B graphs, where itis the ratio of the value of the cut generated minus the negative edge weights to the semide�nitebound minus the negative edge weights.results in Table 2. In all 10 instances, we compute the optimal solution; for 5 instances, thevalue of the cut produced is equal to Z�P , and for the others, we have been able to exploitadditional information from the dual semide�nite program to prove optimality (for the problemdantzig42, gr48 and hk48, Poljak and Rendl [60] also show that our solution is optimal). For allTSPLIB instances, the maximum cut value is within .995 of the semide�nite bound. Given thesecomputational results, it is tempting to speculate that a much stronger bound can be proven forthese Euclidean instances. However, the instance de�ned by a unit length equilateral trianglehas a maximum cut value of 2, but Z�P = 94 , for a ratio of 89 = 0:8889.Homer and Peinado [34] have implemented our algorithm on a CM-5, and have shown that itproduces optimal or very nearly optimal solutions to a number of MAX CUT instances derivedfrom via minimization problems. These instances were provided by Michael J�unger [35] and havebetween 828 and 1366 vertices.6 GeneralizationsWe can use the same technique as in Section 1 to approximate several other problems. In thenext section we describe a variation of MAX CUT and give an (�� �)-approximation algorithmfor it. In Section 6.2 we give an (� � �)-approximation algorithm for the MAX 2SAT problem,and show that it leads to a slightly improved algorithm for MAX SAT. Finally, in Section 6.3, wegive a (� � �)-approximation algorithm for the maximum directed cut problem (MAX DICUT),where � > :79607. In all cases, we will show how to approximate more general integer quadraticprograms that can be used to model these problems.6.1 MAX RES CUTThe MAX RES CUT problem is a variation of MAX CUT in which pairs of vertices are forcedto be on either the same side of the cut or on di�erent sides of the cut. The extension of14
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Instance Size SD Val Cut Val Timedantzig42 42 42638 42638 43.35gr120 120 2156775 2156667 754.87gr48 48 321815 320277 26.17gr96 96 105470 105295 531.50hk48 48 771712 771712 66.52kroA100 100 5897392 5897392 420.83kroB100 100 5763047 5763047 917.47kroC100 100 5890760 5890760 398.78kroD100 100 5463946 5463250 469.48kroE100 100 5986675 5986591 375.68Table 2: Summary of results of algorithm on TSPLIB instances. SD Val is the value producedby the semide�nite relaxation. Cut Val is the value of the best cut output by the algorithm.the algorithm to the MAX RES CUT problem is trivial. We merely need to add the followingconstraints to (P ): vi � vj = 1 for (i; j) 2 E+ and vi � vj = �1 for (i; j) 2 E�, where E+ (resp.E�) corresponds to the pair of vertices forced to be on the same side (resp. di�erent sides) of thecut. Using the randomized algorithm of Section 1 and setting yi = 1 if r � vi � 0 and yi = �1otherwise gives a feasible solution to MAX RES CUT, assuming that a feasible solution exists.Indeed, it is easy to see that if vi � vj = 1, then the algorithm will produce a solution such thatyiyj = 1. If vi � vj = �1 then the only case in which the algorithm produces a solution such thatyiyj 6= �1 is when vi �r = vj �r = 0, an event that happens with probability 0. The analysis of theexpected value of the cut is unchanged and, therefore, the resulting algorithm is a randomized(�� �)-approximation algorithm.Another approach to the problem is to use a standard reduction of MAX RES CUT to MAXCUT based on contracting edges and \switching" cuts (see e.g. [60]). This reduction introducesnegative edge weights and so we do not discuss it here, although Theorem 2.7 can be used toshow that our MAX CUT algorithm applied to a reduced instance has a performance guaranteeof (� � �) for the original MAX RES CUT instance. In fact, a more general statement can bemade: any �-approximation algorithm (in the sense of Theorem 2.7) for MAX CUT instancespossibly having negative edge weights leads to a �-approximation algorithm for MAX RES CUT.6.2 MAX 2SAT and MAX SATAn instance of the maximum satis�ability problem (MAX SAT) is de�ned by a collection Cof boolean clauses, where each clause is a disjunction of literals drawn from a set of variablesfx1; x2; . . . ; xng. A literal is either a variable x or its negation �x. The length l(Cj) of a clauseCj is the number of distinct literals in the clause. In addition, for each clause Cj 2 C thereis an associated non-negative weight wj . An optimal solution to a MAX SAT instance is anassignment of truth values to the variables x1; . . . ; xn that maximizes the sum of the weightof the satis�ed clauses. MAX 2SAT consists of MAX SAT instances in which each clause haslength at most two. MAX 2SAT is NP-complete [19]; the best approximation algorithm knownpreviously has a performance guarantee of 34 and is due to Yannakakis [71] (see also Goemansand Williamson [22]). As with the MAX CUT problem, MAX 2SAT is known to be MAX SNP-hard [55]; thus there exists some constant c < 1 such that the existence of a c-approximation15
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algorithm implies that P = NP [2]. Bellare, Goldreich, and Sudan [6] have shown that a95/96-approximation algorithm for MAX 2SAT would imply P = NP . Haglin [28, 29] hasshown that any �-approximation algorithm for MAX RES CUT can be translated into a �-approximation algorithm for MAX 2SAT, but we will show a direct algorithm here. Haglin'sobservation together with the reduction from MAX RES CUT to MAX CUT mentioned in theprevious section shows that any �-approximation for MAX CUT with negative edge weightstranslates into a �-approximation algorithm for MAX 2SAT.6.2.1 MAX 2SATIn order to model MAX 2SAT, we consider the integer quadratic programMaximize Xi<j [aij(1� yiyj) + bij(1 + yiyj)](Q0) subject to: yi 2 f�1; 1g 8i 2 V;where aij and bij are non-negative. The objective function of (Q0) is thus a non-negative linearform in 1 � yiyj . To model MAX 2SAT using (Q0), we introduce a variable yi in the quadraticprogram for each boolean variable xi in the 2SAT instance; we also introduce an additionalvariable y0. The value of y0 will determine whether -1 or 1 will correspond to \true" in the MAX2SAT instance. More precisely, xi is true if yi = y0 and false otherwise. Given a boolean formulaC, we de�ne its value v(C) to be 1 if the formula is true and 0 if the formula is false. Thus,v(xi) = 1+y0yi2 and v(�xi) = 1� v(xi) = 1�y0yi2 . Observe thatv(xi _ xj) = 1� v(�xi ^ �xj) = 1� v(�xi)v(�xj) = 1� 1� y0yi2 1� y0yj2= 14 �3 + y0yi + y0yj � y20yiyj�= 1 + y0yi4 + 1 + y0yj4 + 1� yiyj4 :The value of other clauses with 2 literals can be similarly expressed; for instance, if xi is negatedone only needs to replace yi by �yi. Therefore, the value v(C) of any clause with at most twoliterals per clause can be expressed in the form required in (Q0). As a result, the MAX 2SATproblem can be modelled asMaximize XCj2Cwjv(Cj)(SAT ) subject to: yi 2 f�1; 1g 8i 2 f0; 1; . . . ; ng;where the v(Cj) are non-negative linear combinations of 1+yiyj and 1�yiyj . The (SAT ) programis in the same form as (Q0).We relax (Q0) to:Maximize Xi<j [aij(1� vi � vj) + bij(1 + vi � vj)](P 0) subject to: vi 2 Sn 8i 2 V:Let E[V ] be the expected value of the solution produced by the randomized algorithm. By thelinearity of expectation,E[V ] = 2Xi<j aij Pr[sgn(vi � r) 6= sgn(vj � r)] + 2Xi<j bij Pr[sgn(vi � r) = sgn(vj � r)]:16
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Using the analysis of the max cut algorithm, we note that Pr[sgn(vi � r) = sgn(vj � r)] = 1 �1� arccos(vi � vj), and thus the approximation ratio for the more general program follows fromLemmas 2.4 and 2.8.Hence we can show the following theorem, which implies that the algorithm is an (� � �)-approximation algorithm for (Q0) and thus for MAX 2SAT.Theorem 6.1 E[V ] � �Xi<j [aij(1� vi � vj) + bij(1 + vi � vj)] :6.2.2 MAX SATThe improved MAX 2SAT algorithm leads to a slightly improved approximation algorithm forMAX SAT. In [22], we developed several randomized 34-approximation algorithms for MAX SAT.We considered the following linear programming relaxation of the MAX SAT problem, where I+jdenotes the set of non-negated variables in clause Cj and I�j is the set of negated variables in Cj :Max XCj2Cwjzjsubject to: Xi2I+j yi + Xi2I�j (1� yi) � zj 8Cj 2 C0 � yi � 1 1 � i � n0 � zj � 1 8Cj 2 C:By associating yi = 1 with xi set true, yi = 0 with xi set false, zj = 1 with clause Cj satis�ed, andzj = 0 with clause Cj not satis�ed, the program exactly corresponds to the MAX SAT problem.We showed that for any feasible solution (y; z), if xi is set to be true with probability yi, thenthe probability that clause j will be satis�ed is at least (1� (1� 1k )k)zj , for k = l(Cj). We thenconsidered choosing randomly between the following two algorithms: (1) set xi true independentlywith probability yi; (2) set xi true independently with probability 12 . Given this combinedalgorithm, the probability that a length k clause is satis�ed is at least 12(1�2�k)+ 12(1�(1� 1k )k)zj .This expression can be shown to be at least 34zj for all lengths k. Thus if an optimal solution tothe linear program is used, the algorithm results in a 34 -approximation algorithm for MAX SAT,since the expected value of the algorithm is at least 34Pj wjzj .We formulate a slightly di�erent relaxation of the MAX SAT problem. Let u(C) denote arelaxed version of the expression v used in the previous section in which the products yiyj arereplaced by inner products of vectors vi � vj . Thus u(xi) = 12(1 + vi � v0), u(�xi) = 12(1� vi � v0),and u(xi _ xj) = 14(1 + vi � v0) + 14(1 + vj � v0) + 14(1 � vi � vj). We then consider the followingrelaxation, Max XCj2Cwjzjsubject to: Xi2I+j u(xi) + Xi2I�j u(�xi) � zj 8Cj 2 Cu(Cj) � zj 8Cj 2 C; l(Cj) = 2vi � vi = 1 0 � i � n0 � zj � 1 8Cj 2 C:17
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Thus if we set xi to be true with probability u(xi) for the optimal solution to the correspondingsemide�nite program, then by the arguments of [22], we satisfy a clause Cj of length k withprobability at least (1� (1� 1k )k)zj .To obtain the improved bound, we consider three algorithms: (1) set xi true independentlywith probability 12 ; (2) set xi true independently with probability u(xi) (given the optimal solutionto the program); (3) pick a random unit vector r and set xi true i� sgn(vi �r) = sgn(v0�r). Supposewe use algorithm i with probability pi, where p1 + p2 + p3 = 1. From the previous section, foralgorithm (3) the probability that a clause Cj of length 1 or 2 is satis�ed is at least �u(Cj) � �zj .Thus the expected value of the solution is at leastXj:l(Cj)=1wj(:5p1+ (p2 + �p3)zj) + Xj:l(Cj)=2wj(:75p1 + (:75p2+ �p3)zj)+ Xj:l(Cj)�3wj((1� 2�l(Cj))p1 + (1� (1� 1l(Cj))l(Cj))p2zj):If we set p1 = p2 = :4785 and p3 = :0430, then the expected value is at least :7554Pj wjzj ,yielding a .7554-approximation algorithm. To see this, we check the value of the expression forlengths 1 through 4, and notice that mink(1�(1� 1k )k) � 1� 1e and :4785((1�2�5)+1� 1e ) � :7554.We can obtain even a slightly better approximation algorithm for the MAX SAT problem.The bottleneck in the analysis above is that algorithm (3) contributes no expected weight forclauses of length 3 or greater. For a given clause Cj of length 3 or more, let Pj be a set of length2 clauses formed by taking the literals of Cj two at a time; thus Pj will contain �l(Cj)2 � clauses.If at least one of the literals in Cj is set true, then at least l(Cj)� 1 of the clauses in Pj will besatis�ed. Thus the following program is a relaxation of the MAX SAT problem:Max XCj2Cwjzjsubject to: Xi2I+j u(xi) + Xi2I�j u(�xi) � zj 8Cj 2 Cu(Cj) � zj 8Cj 2 C; l(Cj) = 21l(Cj)� 1 XC2Pj u(C) � zj 8Cj 2 C; l(Cj) � 3vi � vi = 1 0 � i � n0 � zj � 1 8Cj 2 C:Algorithm (3) has expected value of �u(C) for each C 2 Pj for any j, so that its expected valuefor any clause of length 3 or more becomes at least� � 1�l(Cj)2 � XC2Pj u(C) = � � 2l(Cj) 1l(Cj)� 1 XC2Pj u(C)� � � 2l(Cj)zj ;so that the overall expectation of the algorithm will be at leastXj:l(Cj)=1wj(:5p1+ (p2 + �p3)zj) + Xj:l(Cj)=2wj(:75p1+ (:75p2+ �p3)zj)18
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+ Xj:l(Cj)�3wj((1� 2�l(Cj))p1 + ((1� (1� 1l(Cj))l(Cj))p2 + � � 2l(Cj)p3)zj):By setting p1 = p2 = :467 and p3 = :066, we obtain a .7584-approximation algorithm, which canbe veri�ed by checking the expression for lengths 1 through 6, and noticing that :467((1� 1e) +(1� 2�7)) � :7584: Other small improvements are possible by tightening the analysis.6.3 MAX DICUTSuppose we are given a directed graph G = (V;A) and weights wij on each directed arc (i; j) 2 A,where i is the tail of the arc and j is the head. The maximum directed cut problem is that of�nding the set of vertices S that maximizes the weight of the edges with their tails in S and theirheads in �S. The problem is NP-hard via a straightforward reduction from MAX CUT. The bestpreviously known approximation algorithm for MAX DICUT has a performance guarantee of 14[55].To model MAX DICUT, we consider the integer quadratic programMax Xi;j;k[cijk(1� yiyj � yiyk + yjyk) + dijk(1 + yiyj + yiyk + yjyk)](Q00) subject to: yi 2 f�1; 1g 8i 2 V;where cijk and dijk are non-negative. Observe that 1� yiyj � yiyk + yjyk can also be written as(1� yiyj)(1� yiyk) (or as (1� yiyj)(1+ yjyk)), and, thus, the objective function of (Q00) can beinterpreted as a non-negative restricted quadratic form in 1�yiyj . Moreover, 1�yiyj�yiyk+yjykis equal to 4 if yi = �yj = �yk and 0 otherwise, while 1 + yiyj + yiyk + yjyk is 4 if yi = yj = ykand is 0 otherwise.We can model the MAX DICUT problem using the program (Q00) by introducing a variableyi for each i 2 V , and, as with the MAX 2SAT program, and introducing a variable y0 thatwill denote the S side of the cut. Thus i 2 S i� yi = y0. Then arc (i; j) contributes weight14wij(1+yiy0)(1�yjy0) = 14wij(1+yiy0�yjy0�yiyj) to the cut. Summing over all arcs (i; j) 2 Agives a program of the same form as (Q00). We observe that if the directed graph has weightedindegree of every vertex equal to weighted outdegree, the program (Q00) reduces to one of theform (Q0), and therefore our approximation algorithm has a performance guarantee of (�� �).We relax (Q00) to:Max Xi;j;k[cijk(1� vi � vj � vi � vk + vj � vk) + dijk(1 + vi � vj + vi � vk + vj � vk)](P 00) subject to: vi 2 Sn 8i 2 V:We approximate (Q00) by using exactly the same algorithm as before. The analysis is somewhatmore complicated. As we will show, the performance guarantee � is slightly weaker, namely� = min0��<arccos(�1=3) 2� 2� � 3�1 + 3 cos � > 0:79607:Given a vector r drawn uniformly from the unit sphere Sn, we know by the linearity ofexpectation that the expected value E[U ] of the solution output is4Xi;j;k [cijk � Pr[sgn(vi � r) 6= sgn(vj � r) = sgn(vk � r)] + dijk � Pr[sgn(vi � r) = sgn(vj � r) = sgn(vk � r)]] :19
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Consider any term in the sum, say dijk � Pr[sgn(vi � r) = sgn(vj � r) = sgn(vk � r)]. The cijk termscan be dealt with similarly by simply replacing vi by �vi. The performance guarantee followsfrom the proof of the following two lemmas.Lemma 6.2Pr[sgn(vi � r) = sgn(vj � r) = sgn(vk � r)] = 1� 12� (arccos(vi � vj)+ arccos(vi � vk) + arccos(vj � vk)):Lemma 6.3 For any vi; vj ; vk 2 Sn,1� 12� (arccos(vi � vj) + arccos(vi � vk) + arccos(vj � vk)) � �4 [1 + vi � vj + vi � vk + vj � vk ] ;where � = min0��<arccos(�1=3) 2� 2��3�1+3 cos � > 0:79607.Proof of Lemma 6.2: A very short proof can be given relying on spherical geometry. The desiredprobability can be seen to be equal to twice the area of the spherical triangle polar to the sphericaltriangle de�ned by vi, vj and vk. Stated this way, the result is a corollary to Girard's formula(1629 [20], see [65]) expressing the area of a spherical triangle with angles �1, �2 and �3 as itsexcess �1 + �2 + �3 � �.We also present a proof of the lemma from �rst principles. In fact, our proof parallels Euler'sproof (1781 [15], see [65]) of Girard's formula. We de�ne the following events:A : sgn(vi � r) = sgn(vj � r) = sgn(vk � r)Bi : sgn(vi � r) 6= sgn(vj � r) = sgn(vk � r)Ci : sgn(vj � r) = sgn(vk � r)Cj : sgn(vi � r) = sgn(vk � r)Ck : sgn(vi � r) = sgn(vj � r):Note that Bi = Ci � A. We de�ne Bj and Bk similarly, so that Bj = Cj � A and Bk = Ck �A.Clearly, Pr[A] + Pr[Bi] + Pr[Bj ] + Pr[Bk] = 1: (1)Also, Pr[Ci] = Pr[A]+Pr[Bi] and similarly for j and k. Adding up these equalities and subtracting(1), we obtain Pr[Ci] + Pr[Cj ] + Pr[Ck] = 1 + 2Pr[A]: (2)By Lemma 2.2, Pr[Ci] = 1 � 1� arccos(vj � vk) and similarly for j and k. Together with (2), wederive Pr[A] = 1� 12� (arccos(vi � vj) + arccos(vi � vk) + arccos(vj � vk));proving the lemma.Proof of Lemma 6.3: One can easily verify that the de�ned value of � is greater than 0:79607.Let a = arccos(vi � vj), b = arccos(vi � vk) and c = arccos(vj � vk). From the theory of sphericaltriangles, it follows that the possible values for (a; b; c) over all possible vectors vi, vj and vkde�ne the setS = f(a; b; c) : 0 � a � �; 0 � b � �; 0 � c � �; c � a+ b; b � a+ c; a � b+ c; a+ b+ c � 2�g:(see [7, Corollary 18.6.12.3]). The claim can thus be restated as 1� 12� (a+b+c) � �4 (1+cos(a)+cos(b) + cos(c)) for all (a; b; c)2 S.Let (a; b; c) minimize h(a; b; c) = 1� 12� (a+ b + c)� �4 (1 + cos(a) + cos(b) + cos(c)) over all(a; b; c) 2 S. We consider several cases: 20
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1. a+ b+ c = 2�. We have 1� 12� (a+ b+ c) = 0. On the other hand,1 + cos(a) + cos(b) + cos(c)= 1 + cos(a) + cos(b) + cos(a+ b)= 1 + cos(a+ b) + 2 cos(a+ b2 ) cos(a� b2 )= 2 cos2(a+ b2 ) + 2 cos(a+ b2 ) cos(a� b2 )= 2 cos(a+ b2 ) �cos(a+ b2 ) + cos(a� b2 )� : (3)We now derive that h(a; b; c) � ��2 cos(a+b2 )[cos(a+b2 ) + cos(a�b2 )] � 0, the last inequalityfollowing from the fact that �2 � a+b2 � � � ja�b2 j and thus cos(a+b2 ) � 0 and [cos(a+b2 ) +cos(a�b2 )] � 0.2. a = b + c or b = a + c or c = a + b. By symmetry, assume that c = a + b. Observe that1� 12� (a+ b+ c) = 1� a+b� . On the other hand, by (3) we have that1 + cos(a) + cos(b) + cos(c)= 2 cos(a+ b2 )(cos(a� b2 ) + cos(a+ b2 ))� 2 cos(a+ b2 )(1 + cos(a+ b2 )):Letting x = a+b2 , we observe that the claim is equivalent to 1 � 2x� � �2 cos(x)(1 + cos(x))for any 0 � x � �=2. One can in fact verify that 1� 2x� � 0:819892 cos(x)(1+ cos(x)) for any0 � x � �=2, implying the claim.3. a = 0 or b = 0 or c = 0. Without loss of generality, let a = 0. The de�nition of S impliesthat b = c, and thus b = a+ c. This case therefore reduces to the previous one.4. a = � or b = � or c = �. Assume a = �. This implies that b+c = � and, thus, a+b+c = 2�.We have thus reduced the problem to case 1.5. In the last case, (a; b; c) belongs to the interior of S. This implies that the gradient of hmust vanish and the hessian of h must be positive semide�nite at (a; b; c). In other words,sin a = sin b = sin c = 2�� , and cosa � 0; cosb � 0 and cos c � 0. From this, we derive thata = b = c. But h(a; a; a) = 1� 3a2� � �4 (1 + 3 cos(a)). The lemma now follows from the factthat a � 2�3 , the de�nition of � and the fact that 1 + 3 cosa � 0 for a � arccos �13 .Thus we obtain a (���)-approximation algorithm for (Q00) and for the MAX DICUT problem.7 Concluding RemarksOur motivation for studying semide�nite programming relaxations came from a realization thatthe standard tool of using linear programming relaxations for approximation algorithms hadlimits which might not be easily surpassed (see the conclusion of Goemans and Williamson [22]).In fact, a classical linear programming relaxation for the maximum cut problem can be shownto be arbitrarily close to twice the value of the maximum cut in the worst case. Given the21
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work of Lov�asz and Schrijver [46, 47], which showed that tighter and tighter relaxations couldbe obtained through semide�nite programming, it seemed worthwhile to investigate the power ofsuch relaxations from a worst-case perspective. The results of this paper constitute a �rst stepin this direction. As we mentioned in the introduction, further steps have already been made,with improved results for MAX 2SAT and MAX DICUT by Feige and Goemans, and for coloringby Karger, Motwani, and Sudan. We think that the continued investigation of these methods ispromising.While this paper leaves many open questions, we think there are two especially interest-ing problems. The �rst question is whether a .878-approximation algorithm for MAX CUTcan be obtained without explicitly solving the semide�nite program. For example, the �rst 2-approximation algorithms for weighted vertex cover involved solving a linear program [32], butlater Bar-Yehuda and Even [3] devised a primal-dual algorithm in which linear programming wasused only in the analysis of the algorithm. Perhaps a semide�nite analog is possible for MAXCUT. The second question is whether adding additional constraints to the semide�nite programleads to a better worst-case bound. There is some reason to think this might be true. Linearconstraints are known for which the program would �nd an optimal solution on any planar graph,whereas there is a gap of 3225+5p5 for the current semide�nite program for the 5-cycle.One consequence of this paper is that the situation with several MAX SNP problems is nolonger clear-cut. When the best-known approximation results for MAX CUT and MAX SAT hadsuch long-standing and well-de�ned bounds as 12 and 34 , it was tempting to believe that perhapsno further work could be done in approximating these problems, and that it was only a matterof time before matching hardness results would be found. The improved results in this papershould rescue algorithm designers from such fatalism. Although MAX SNP problems cannot beapproximated arbitrarily closely, there still is work to do in designing improved approximationalgorithms.AcknowledgementsSince the appearance of an extended abstract of this paper, we have bene�ted from discussionswith a very large number of colleagues. In particular, we would like to thank Don Coppersmithand David Shmoys for pointing out to us that our MAX 2SAT algorithm could lead to an im-proved MAX SAT algorithm, Jon Kleinberg for bringing reference [44] to our attention, BobVanderbei for kindly giving us his semide�nite code, Francisco Barahona and Michael J�ungerfor providing problem instances, Joel Spencer for motivating Theorem 2.6, Farid Alizadeh, Ga-bor Pataki and Rob Freund for results on semide�nite programming, and Shang-Hua Teng forbringing reference [38] to our attention. We received other useful comments from Farid Alizadeh,Joseph Cheriyan, Jon Kleinberg, Monique Laurent, Colin McDiarmid, Giovanni Rinaldi, DavidShmoys, �Eva Tardos, and the two anonymous referees.References[1] F. Alizadeh. Interior point methods in semide�nite programming with applications to com-binatorial optimization. SIAM Journal on Optimization, 5:13{51, 1995.[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and hardnessof approximation problems. In Proceedings of the 33rd Annual Symposium on Foundationsof Computer Science, pages 14{23, 1992. 22
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